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We first explore why Self-supervised Perturbation (SSP)
attack works in Appendix A. In Appendix B, we compare
NRP with conventional adversarial training (AT) method
known as feature denoising [17] in terms of adversarial
robustness and defense training time. Differences of our
proposed attack and defense from feature scattering [19]
method are discussed in Appendix C. Ability of SSP to fool
object detectors is compared against CDA [14] in Appendix
D. We show that different transformation based defenses,
JPEG, total variation minimization (TVM) and median fil-
tering (MF) are not effective against SSP in Appendix E.
Attack parameters against which our defense is evaluated
are provided in Appendix F. Finally, we visually demon-
strate NRP’s ability to remove different kinds of adversarial
perturbations in Appendix G.

Appendix A. Why Self-supervision Works?
Here, we highlight our intuition to create adversarial ex-

amples using feature space of VGG model [15].

• Neural Style Transfer: [5, 13] observed that the ability
to transfer styles improves with AT, a phenomenon often
related to VGG models [15] . On the other hand, VGG
networks are more vulnerable to adversarial attacks [5]. A
hypothesis was presented in [5] that perhaps VGG initial
layers are as robust as adversarially trained models which
allows better style transfer without AT.

• Transferability of Natural vs. Robust Layers: In addi-
tion to style transfer hypothesis [5], we explore the con-
nection between layers of VGG and adversarially trained
models in the context of adversarial attacks:

– Maximum Distortion of Non-Robust Features:
Datasets containing natural images contain both robust
and non-robust features [9]. Robust features can be de-
scribed by high level concepts like shape e.g. ear or
noise etc., while non-robust features can arise from
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Figure 1: Fooling rate comparison is presented. NT and
AT represent naturally and adversarially trained models, re-
spectively. VGG16-NT and ResNet50-NT are trained on
ImageNet while ResNet50-AT [6] is adversarially trained
on a subset of ImageNet. Adversaries are created by apply-
ing distortion to the feature space of each model on NeurIPS
dataset and then transferred to naturally trained IncRes-v2
[16]. Adversaries found in VGG space have higher trans-
ferability. In comparison, transferability of feature space of
ResNet50 increases after adversarially training.

background or texture [7]. Ilyas et al. [9] argues that
neural networks can pick-up on non-robust features to
minimize the empirical risk over the given the data dis-
tribution and the transferability of adversarial examples
can be explained by these non-robust features in differ-
ent networks.

– Transferability: VGG’s ability to destroy non-robust
features translates to better transferability even without
any AT as compared to ResNet models (see Figures 1
and 2).

1
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Figure 2: A visual demonstration of adversaries found by SSP in the feature space of diffrent networks. Perturbation buget is
set to l∞ ≤ 16. NT and AT represent naturally and adversarially trained models, respectively.
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Figure 3: t-SNE [11] visualization of logits vs. feature representation of randomly selected classes from ImageNet validation set. Logits
are computed from VGG16 [15] last layer while features are extracted from ”Block3-Conv3” of the same model. Our intuition is based on
the observation that features space is shared among input samples rather than the logit space. Attacking such shared representation space
removes task dependency constraint during adversary generation optimization and produces generalizable adversarial examples.

• Shared Representation Space: Our objective is to find
adversarial patterns that can generalize across different
network architectures trained for different tasks (e.g. clas-
sification, objection detection or segmentation). These
are diverse tasks that do not share loss functions, dataset
or training mechanism. Decision-boundary based attacks
use model final response (e.g. logits in the case of classifi-
cation) that is specific to input sample which leads to task-
specific perturbations. A network’s feature space, how-
ever, is shared regardless the input category. Therefore,
perturbations found in such a space are highly generaliz-
able (see Figure 3).

Appendix B. Comparison with AT

Conventional AT methods, such as [17], lose clean ac-
curacy to gain adversarial robustness. Take an example of
ResNet152 adversarially trained by [17]. In order to gain
55.7% robustness (ε ≤ 16) against targeted PGD attacks
with ten number of iterations, the model clean accuracy
drops from 78% to 65.3% which is even lower than VGG11.

In contrast, our approach does not suffer from performance
degradation on clearn samples.

Appendix B.1. Defense Results

To compare against [17], we ran ten number of PGD at-
tack iterations. Labels for this targeted attack were chosen
randomly as suggested by [17]. It is important to note that
NRP can be turned into a dynamic defense, for example
by first taking a random step in the input space and then
projecting the modified input sample onto the perceptual
space using our NRP. This way, NRP can be used to de-
fend against attacks that try to incorporate NRP during at-
tack optimization (a white box setting). We demonstrate
this behavior in Table 1 by incorporating NRP in PGD at-
tack using backpass approach introduced in [1]. Even for
this challenging scenario, NRP shows significantly higher
robustness than [17] while maintaining a higher clean accu-
racy. This highlights the benefit of self-supervision in AT.



Method Clean Adversarial

ε ≤ 16/255

Original 78.31 0.66
Feature Denoising[17] 65.3 55.7

NRP 73.5 ±1.5 63.0 ±2.0

Table 1: Defense success in terms of accuracy on ImageNet
validation set (50k images). Higher is better.

Appendix B.2. Training Cost

Conventional AT methods like [17] depend on number
of classes, dataset and task. In contrast, our defense is inde-
pendent of such constraints. We describe the computational
benefits of our defense with feature denoising based AT [17]
in Table 2. Training time of our defense remains the same
regardless of the backbone model while training time for
[17] increases with the model size. In conclusion, conven-
tional AT requires large amount of labelled data (e.g., [17]
is trained on 1.3 million images of ImageNet), while our
defense can be trained on small unlabelled data (e.g., 25k
unlabelled MS-COCO images).

Method No. of Training Task/Label Dataset
GPUs Time Dependency Specific

[17] 128 52 Yes Yes
NRP 4 28 No No

Table 2: Comparison of training time (hours) between NRP
and AT on ResNet152 model [17].

Appendix C. Comparison with [19]

Defense comparison: Feature Scattering (FS) [19] based
AT remains model and task-specific. Instead, our defense is
independent to the target model and task, thereby providing
better generalizability.

Attack comparison: The proposed attack FSA [19] oper-
ates in logit space in an unsupervised way by maximizing
Optimal Transport distance, as compared to our SSP which
operates in perceptual feature space (e.g., VGG features).
we compare the transferability of their attack with our SSP.
As demonstrated in Table 3, SSP performs favorably well
against FSA.

Appendix D. SSP vs. CDA

We compare our SSP with a recent transferable attack
[14] in Table 4 on MS-COCO validation set using Mask-
RCNN. mAP is reported with IoU = 0.5.

Attack Inc-v3 Inc-v4 Res-152 IncRes-v2 Adv-v3 IncRes-v2ens

FSA [19] 60.4 64.2 68.8 71.0 72.2 88.6
SSP 5.3 5.9 16.5 14.1 25.9 58.0

Table 3: Transferability (ε ≤ 16) comparison of FSA
with our attack (SSP). Results are reported for ImageNet-
NeurIPS dataset. Lower is better.

Attack ε ≤ 8/255 ε ≤ 16/255

CDA-ImageNet 35.2 8.1
CDA-Comics 40.5 16.8
CDA-Paintings 41.7 14.8
SSP 31.8 9.7

Table 4: SSP is compared with CDA [14]. Lower is better.

Appendix E. Effect of Input Transformations
on SSP Attack

Different input transformations have been proposed to
mitigate the adversarial effect. We have tested strength of
SSP attack against well studied transformations including:
• JPEG: This transformation reduces adversarial effect by

removing high frequency components in the input image.
• Total Variation Minimization (TVM): TVM measures

small variations thus it can be effective against relatively
smaller adversarial perturbations.

• Median Filtering (MF): This transformation filters out the
input image by replacing each pixel with the median of its
neighboring pixels.

We report our experimental results on segmentation and ob-
ject detection tasks.

Segmentation: SSP attack created on CAMVID [2] was
able to bring down per pixel accuracy of Segnet-Basic by
47.11% within l∞ ≤ 16 (see Table 6 and Figure 4). JPEG
and TVM transformations are slightly effective but only at
the cost of drop in accuracy on benign examples.

Object Detection: RetinaNet [10] collapses in the pres-
ence of adversaries found by SSP on MS-COCO validation
set. Its mean average precision (mAP) with 0.5 intersection
over union (IOU) drops from 53.78% to 5.16% under per-
turbation budget l∞ ≤ 16 (see Table 7 and Figure 5). TVM
is relatively more effective compared to other transforms
against the SSP.

Appendix F. Attack Parameters
For FGSM, we use a step size of 16. For R-FGSM, we

take a step of size α=16/3 in a random direction and then
a gradient step of size 16−α to maximize model loss. The
attack methods, I-FGSM, MI-FGSM and DIM, are run for
10 iterations. The step size for these attacks is set to 1.6, as
per the standard practice. The momentum decay factor for
MI-FGSM is set to 1. This means that attack accumulates
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Figure 4: Segnet-Basic output is shown for different images. (a) is the original image, while (b) shows predictions for the
original image. (c) is the adversary found by SSP attack, while (d) shows predictions for the adversarial image. Perturbation
budget is l∞ ≤ 16.
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Figure 5: RetinaNet detection results are shown for different images. (a) and (c) show detection for the original images, while
(b) and (d) show detection for adversaries found using SSP attack.

all the previous gradient information to perform the current
update and is shown to have the best success rate [3]. For
DIM, the transformation probability is set to 0.7. In the
case of FFF [12], we train the adversarial noise for 10K it-
erations to maximize the response at the activation layers of
VGG-16 [15]. For the SSP, we used VGG-16 [15] conv3-3
feature map as the feature loss. Since SSP generation ap-
proach maximizes loss w.r.t a benign example, it does not
suffer from the over-fitting problem. We run SSP approach
for the maximum number of 100 iterations. The transfer-
ability of different attacks is compared against the number
of iterations in Figure 6. MI-FGSM and DIM quickly reach
to their full potential within ten iterations. The strength of I-
FGSM strength decreases, while feature distortion strength
(SSP) increases with the number of attack iterations. Top-1
(T-1) and Top-5 (T-5) accuracies of Imagenet trained mod-
els on NeurIPS dataset are reported in Table 5.

Appendix G. Generalization to Unseen Attacks
We show visual demonstration (see Figures 7, 8, 9 and

10) of how our defense, NRP, trained using SSP attack is
able to generalize on the variety of unseen perturbations
created by different attack algorithms. NRP successfully
removes the perturbations that it never saw during training.

• Figure 7 shows adversaries coming from adversarially ro-

5 10 15 20 25 30 35 40 45 50 100
Number of iterations

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy I-FGSM 

MI-FGSM 
DIM 
SSP

Figure 6: Accuracy of Inc-v3 for adversaries created on
VGG-16 by different attacks. SSP’s strength increases with
number of iterations, in contrast to MI-FGSM and DIM.

bust model. It’s the most difficult case as perturbations
does not resemble to a noisy patter rather represent mean-
ingful structured pattern that are in-painted into the clean
image. NRP’s ability to remove such difficult patterns
shows that our defense can separate the original signal
from the adversarial one.

• NRP has no difficulty in removing thick patterns intro-
duced by DIM or smooth perturbations of DIM-TI attacks
(Figure 8).



Table 5: Model accuracies are reported on original data set ImageNet-NIPS containing benign examples only. T-1: top-1 and
T-5: top-5 accuracies. Best performances are shown in bold.

Accuracy Naturally Trained Adv. Trained
Inc-v3 Inc-v4 Res-152 IncRes-v2 VGG-19 Adv-v3 Inc-v3ens3 IncRes-v2ens

T-1 95.3 97.7 96.1 100.0 85.5 95.1 93.9 97.8
T-5 99.8 99.8 99.9 100.0 96.7 99.4 98.1 99.8

Table 6: Segnet-Basic accuracies on CAMVID test set with
and without input transformations against SSP. Best perfor-
mances are shown in bold.

Method No Attack SSP
l∞ ≤ 8 l∞ ≤ 16

No Defense 79.70 52.48 32.59
JPEG (quality=75) 77.25 51.76 32.44
JPEG (quality=50) 75.27 52.45 33.16
JPEG (quality=20) 68.82 53.08 35.54
TVM (weights=30) 73.70 55.54 34.21
TVM (weights=10) 70.38 59.52 34.57
MF (window=3) 75.65 49.18 30.52

Table 7: mAP (with IoU = 0.5) of RetinaNet is reported on
MS-COCO validation set with and without input transfor-
mations against SSP. Best performances are shown in bold.

Method No Attack SSP
l∞ ≤ 8 l∞ ≤ 16

No Defense 53.78 22.75 5.16
JPEG (quality=75) 49.57 20.73 4.7
JPEG (quality=50) 46.36 19.89 4.33
JPEG (quality=20) 40.04 19.13 4.58
TVM (weights=30) 47.06 27.63 6.36
TVM (weights=10) 42.79 32.21 9.56
MF (window=3) 43.48 19.59 5.05

Adversaries produced by SSP using adversarilly robust features [6].

Purified adversaries by NRP.

Figure 7: NRP is capable to remove these difficult adversaries where adversarial image is in-painited into the clean image.
Untargetted adversaries are created by applying SSP to feature space of adversarially trained ResNet50 [6]. Perturbation
budget is set to l∞ ≤ 16.



Adversaries produced by DIM [18]

Purified adversaries by NRP

Adversaries produces by DIMTI [4]

Purified adversaries by NRP

Figure 8: NRP removes diverse patterns produces by DIM [18] and translation-invariant attacks [4] to a great extent. Untar-
getted adversaries are created by ensemble of ensemble of Inc-v3, Inc-v4, IncRes-v2, and Res-152. Perturbation budget is
set to l∞ ≤ 16.



Adversaries produced by CDA [14] - ImageNet

Purified adversaries by NRP

Adversaries produced by CDA [14] - Paintings

Purified adversaries by NRP

Figure 9: Our defense successfully able to recover original samples from unseen adversarial patterns. These are untargeted
adversaries produced by CDA [14] trained against Inc-v3 on ImageNet and Paintings. Perturbation budget is set to l∞ ≤ 16.
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Figure 10: Adversaries generated by CDA [14] reduce Mask-RCNN [8] performance. NRP successfully removes adversarial
perturbations and greatly stabilizes Mask-RCNN predictions.
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